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Experimental and theoretical models are used to explore the break of a moraine dam
by catastrophic erosional incision initiated by an overtopping wave. The experiments
are conducted in a rectangular tank with an erodible barrier made from sand and grit.
Theory combines shallow-water hydrodynamics with an empirical model of erosion.
The models confirm that dams can be broken by a catastrophic incision. However,
the displacement wave does not break the dam in its first passage but excites a
long-lived seiche that repeatedly washes over the dam. The cumulative erosion of the
downstream face by the overtopping seiches eventually allows an incipient channel
to form, and catastrophic incision follows. Estimates are presented of the strength of
the initial disturbance required to break the dam, the maximum discharge and the
duration of the runaway incision.

1. Introduction
Geological records suggest that a number of recent floods have originated from

lakes dammed by glacial moraines and been caused by a catastrophic erosional
incision of the dam, triggered by either overfilling during unusual weather conditions
or a large overtopping wave (Clague & Evans 2000). The moraine which dammed
Lake Tempanos in Argentina, for example, failed in the 1940s due to meltwater
accompanying a retreat of the glacier (Rabassa, Rubulis & Suarez 1979). On the
other hand, large destructive waves can be generated by ice or rock falls, which are
likely in steep alpine valleys or beneath the unstable toe of a retreating glacier. For
example, a rock avalanche into the glacial lake Safuna Alta created a displacement
wave over 100 m high (Hubbard et al. 2005), and although the dam did not break,
the wave did generate significant erosion.

A catastrophic erosional incision can be triggered when overfilling or an overtopping
wave notches an incipient channel at the top of the dam; the increased flow through
that opening erodes and deepens the channel still further, which accelerates the
outflow and the erosion, leading to a runaway incision. Artificial earthen dams are
known to fail in this fashion when the adjoining reservoir is overfilled, and various
theoretical and experimental models of the process have been constructed (e.g. Walder
& O’Connor 1997; Coleman, Andrews & Webby 2002; Cao et al. 2004). By contrast,
the failure of a moraine-dammed lake has never been directly witnessed, and triggering
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incision with a large overtopping wave has not previously been modelled in any detail.
The purpose of the current study is to provide the first such models.

Our approach is on the idealized side, combining experimental and theoretical
modelling, and expands substantially on the preliminary work reported by Balmforth
et al. (2008). The experiments are conducted in a smaller scale laboratory setting, in
which the geometry of the lake-moraine system is roughly reduced proportionately.
Unfortunately, we are unable to similarly scale down either the material properties of
the erodible dam or the dynamics of the turbulent water flow. Part of the difficulty is
the lack of detailed information on the material properties of glacial moraines (but
see Clarke 1987; Clague & Evans 2000), and to reproduce the turbulent dynamics,
we would require a bigger apparatus. Thus, the experiments are not in the same
dynamical regime as the geological problem. Instead, we have opted for a simpler,
more qualitative approach, which can make a firmer contact with the accompanying
theory.

The theory couples shallow-water equations for the fluid flow with an empirical
erosion law that determines the height of the dam. For simplicity, the model is two-
dimensional, describing the structure of the flow and the bed in a plane perpendicular
to the dam. This restriction signifies that we cannot capture the fully three-dimensional
dynamics of channelization. Balmforth et al. (2008) presented a short theoretical
discussion of such three-dimensional dynamics, and we comment in more detail on
the ramifications of the restriction to two dimensions later in the current paper.

Guided by both the theory and experiments, we also outline a much simpler
mathematical model of the dam-break dynamics. This reduced model can be used to
gauge in a convenient and simple setting the effect of the various physical parameters
of the problem. Moreover, in principle, the model can be straightforwardly extended
to add a number of physical processes that we currently ignore and to explore the
motivating geophysical application.

Overall, the thrust of our study is to explore under what conditions a wave
can initiate runaway incision and break a dam. We also examine properties of the
resulting flood, such as the maximum discharge and the duration of the dam break. In
principle, these results bear on the important issues of outburst probability and hazard
control and mitigation (McKillop & Clague 2007a, b). There are also applications to
understanding the release of sediments during the dam break (Cui et al. 2006a, b).

2. Experiments
The experiment consists of a rectangular glass tank with length 125 cm and depth

30 cm. The width of the tank was 20 cm, but by inserting a second panel it could
be reduced to 5 cm. The downstream end of the tank was open to allow water and
sediment to drain from the tank. The dams were built from the materials described
below and were shaped into a roughly Gaussian profile, using an appropriately
shaped stencil, with heights of about 10 cm and half-widths (standard deviations of
the Gaussian) of 10 cm. The dams were positioned to leave a metre-long reservoir that
was filled with water up to a depth close to the top of the dam, and the obstruction
was left for a time to allow some water to seep through and check that the dam could
withstand the upstream water pressure. (Some images showing the dammed reservoir
through the sidewall of the tank appear in figures 1–4.) A wave was then initiated
in the reservoir by sweeping water towards the dam using a paddle. A video camera
captured the resulting action. From the video images we extracted profiles of the dam
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Sediment ρ (g cm−3) Porosity Modal particle size (μm) Angle of repose

Medium sand 2.34 0.38 310 36◦

Coarse sand∗ 2.34 0.35 950 36◦

Grit 2.42 0.42 1150 34◦

Fine sand/grit mix∗ 2.38 0.32 250 and 1150 36◦

Medium sand/grit mix∗ 2.36 0.37 310 and 1150 38◦

Table 1. Properties (when dry) of the individual sediments and mixes that were used to build
the dams; the stars indicate which materials made stable but erodible dams. Modal particle
size was estimated from distributions obtained by laser diffraction. The angles of repose are
estimated by tilting or building up a pile of sediment.

and water depth; by floating tracer particles on the water surface we estimated flow
speeds.

Glacial moraines are poorly sorted and loosely consolidated sediments with particle
sizes ranging from fine clays to large boulders, and some evidence for a bimodal
particle size distribution (Clarke 1987). Accordingly, we used a variety of experimental
materials to construct the dams: three types of sand and a coarser grit, each of which
individually was roughly modal. The sands had different mean diameters (motivating
references to ‘fine’, ‘medium’ and ‘coarse’) and relatively wide particle size distributions.
The grit consisted of larger particles of roughly equal size. To make sediments with
bimodal particle size distributions, we mixed the grit with one of the sands in roughly
equal proportions. The materials, their mean particle sizes and some other properties
are listed in table 1.

Not all the materials listed in table 1 were suitable for building dams: those built
from the medium sand were unable to withstand the upstream water pressure and
broke before a wave was even initiated. (The fine sand by itself was even worse,
and so this material was used only in the mixtures.) The grit made a very porous
obstruction, and water drained quickly through, leading to waterlogged structures in
which the downstream face eventually mobilized and collapsed. It was also hard to
incise a channel in the grit dams because the overtopping water often seeped into
the dam rather than eroding it. Overall, the coarse sand and the two sand/gravel
mixtures proved to be the best materials, in terms of providing a dam that was both
stable and erodible by overtopping waves. We speculate that this is because all three
materials contained roughly equal amounts of relatively large and small particles: the
larger particles contributed to dam stability, whilst the smaller particles blocked the
seepage through the structure and allowed greater erodibility.

Provided the amplitude of the initial disturbance was sufficiently strong, and the
dam was made of suitable material (those denoted by stars in table 1), we were
able to initiate runaway incisions. These dam breaks invariably began with a large
wave overtopping the dam and eroding a significant fraction of the downstream face.
However, in none of the experiments was that wave able to create an incipient channel
to trigger a catastrophic incision. (Overly strong waves caused a mechanical failure
of the whole structure.) Instead, a large fraction of the wave energy was reflected
back into the reservoir, and fairly quickly a seiche (sloshing) emerged that repeatedly
overtopped the dam. Each overtopping contributed to the erosion of the downstream
face of the dam, plus some removal of material from its peak. Eventually, the incipient
channel was cut, and a catastrophic incision followed that emptied the majority of
the reservoir within a minute.



4 N. J. Balmforth, J. von Hardenberg and R. J. Zammett

–20 –15 –10 –5 0 5 10 15 20

2

4

6

8

10

12

x (cm)

ζ (cm)

t = 0 s

3
6 and 9

12
15

1824303642

48, 54, 60 and ∞

(a)

0 10 20 30 40 50 60

4

6

8

10

12

14

(b) (c)

(d)

ζm (t), hL (t) (cm)

ζm (t)

hL (t)

t (s)

0 5 10 15

10

11

12

13

0 10 20 30 40 50 60

0 10 20 30 40 50 60

5

10

15

xm (0)–xm(t) (cm)

0.5

1.0

1.5 hm(t) (cm)

t (s)

Figure 1. A successful dam break in the narrow tank. Shown in panel (a) are three
photographs (at t = 0, 18 and 45 s) plus a sequence of curves plotting the dam profile at
the times indicated. The wedge-shaped final state to which the eroded dam converges is shown
by the dashed line. The lower panels show (b) the reservoir depth (measured at the left side of
the photographs), hL(t), and maximum dam height, ζm(t), (c) the shift in the position of the
dam’s maximum, xm(0) − xm(t), and (d) the water depth at that maximum, hm(t).

Figures 1 and 2 show examples of successful dam breaks in the narrow (5 cm) and
wide (20 cm) tank, respectively, for dams made from the coarse sand. The figures
display the evolving profile of the dams, together with time series of a number of
quantities that play a key role in later theoretical developments: the dam’s maximum
height and position, the water depth in the reservoir and the water depth at the dam
maximum. The reservoir depth is measured just upstream of the dam (at the left of
the photographs in figures 1 and 2). More examples are presented in figure 3, which
compares the evolution of reservoir depth for several experiments in wide and narrow
tanks and with two different materials for the dams.

An important difference between the dam breaks in figures 1 and 2 is that the dam
in the narrow tank erodes in an almost two-dimensional fashion, whilst the obstruction
in the wide tank is channelized by the overtopping waves (as in the example presented
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Figure 2. A successful dam break in the wide tank. Shown in panel (a) are three photographs
(at t = 0, 30 and 60 s), plus a sequence of curves plotting the dam profile at the times
indicated, as measured from the bed of the outflow channel (revealed in the foreground of
the photographs). The lower panels show (b) the reservoir depth, hL(t), and maximum dam
height, ζm(t), (c) the shift in the position of the dam’s maximum, xm(0) − xm(t), and (d) the
water depth at that maximum, hm(t).

by Balmforth et al. 2008). The resulting breach allows observation of the depth and
bed of the eroding outflow channel if the channel forms adjacent to one side of the
tank (see the photograph inset into figure 3), which could be engineered by slightly
lowering the dam on that side at the outset. In figure 2, the largely uneroded parts
of the initial dam are visible in the background, and the dam profiles and maximum
height correspond to the bed of the outflow channel, revealed in the foreground. For
both narrow and wide tanks, the fluid flow primarily erodes the downstream flank of
the dam; towards the end of the experiments the erosion slows as the reservoir level
declines, leaving intact a shallow, wedge-shaped structure whose upstream face is a
relic of the original dam.

If the amplitude of the initial disturbance was too weak, a runaway incision did
not occur: although an overtopping seiche could be excited in the reservoir, that
motion eventually damped away before a channel was cut into the top of the dam.
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Figure 3. Plots of reservoir depth against time for dams constructed of coarse sand and the
medium sand/grit mix. For each sediment, two experiments are displayed for both wide and
narrow tanks. The origin of time is shifted to the moment that the incipient channel forms
(denoted tS), and the change in depth from that moment is plotted (i.e. hL(t) − hL(tS) against
t − tS). The curves for the different pairs of experiments are offset from one another for clarity,
and lines showing characteristic values of dhL/dt are also added. Estimates for the duration of
the incision, denoted tI , are indicated (determined as the interval over which |dhL/dt | is near
its maximum). The inset shows a photograph of an incised dam of coarse sand in the wide
tank.

An example of such an ‘unsuccessful’ dam break is shown in figure 4. Evidently, the
initial wave must be sufficiently strong so that the seiche can repeatedly spill over the
dam and cut an incipient channel, before dissipation saps its strength and drainage
lowers the reservoir level. When the seiche did not spill over the dam, the decay of its
amplitude took an exponential form and could be reproduced by Keulegan’s (1959)
viscous boundary layer model, indicating that dissipation inside Stokes layers adjacent
to the walls was primarily responsible. (This theory is compared with numerical results
in figure 6 and further discussed in § 5.2.) On the other hand, the decay was stronger
when the seiche spilled over the dam, suggesting that transmission of wave energy also
played a role. In view of the simple method used to generate the initial disturbance,
we did not study in detail the implied amplitude threshold. Nevertheless, by extracting
initial wave amplitudes from the video recordings, we estimated that, for the coarse
sand dams shown in figures 1 and 4, the threshold, as measured by the elevation of
the water surface, was about 12 % of the reservoir depth.

An interesting feature of the results shown in figure 3 is that the dam break is very
similar in both narrow and wide tanks (compare also figures 1 and 2). In view of the
different nature of the incision in the two cases (two-dimensional versus channelized),
the apparent insensitivity to the width is surprising. Indeed, the widths of breaches
varied significantly in experiments in the wide tank with the same dam materials and
comparable initial conditions (for example, the two experiments with coarse sand
presented in figure 3 formed breaches whose maximum widths differed by almost
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Figure 4. An unsuccessful dam break in the narrow tank. Shown in panel (a) are the initial
and final dam profiles. The lower panels show (b) the reservoir depth, hL(t), and maximum
dam height, ζm(t), (c) the shift in the position of the dam’s maximum, xm(0) − xm(t), and
(d) the water depth at that maximum, hm(t).
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Figure 5. Flow measurements following a tracer particle moving through the breach during
the dam break of figure 1. Plotted against tracer position (with the origin located at the
original maximum elevation of the dam) are (a) the free surface, h + ζ , maximum dam height,
ζ , and water depth, h, (b) speed, u, (c) flux, q =hu, and (d) B = g(h+ ζ )+u2/2. The error bars
reflect errors in the measurement of position.

a factor of two), yet the incision rates remained very similar. In contrast, the dam
composition is much more significant: the coarse sand dams erode significantly faster.

Finally, figure 5 shows some extra details of the flow dynamics during the
catastrophic incision in the experiment of figure 2. The picture displays the dam
height ζ , water depth h and speed u as one moves through the breach in the dam,
obtained by following the position of a tracer on the water surface. From these
measurements, the flux hu and ‘Bernoulli potential’ B = g(h+ζ )+u2/2 are calculated,
which play an important role in the theoretical developments to follow. There is some
suggestion that both hu and B are roughly constant moving with the particle, but the
data are not very conclusive because the estimates of speed u are not very precise.
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3. A shallow-water model
3.1. Governing equations

To model the dam break dynamics, we use the shallow-water equations, modified to
include dissipative terms and supplemented with an equation for the erodible bed.
The main variables are the local water depth h(x, t) and speed u(x, t) and the bed
elevation ζ (x, t). The erodible material is piled up to form a dam on top of the
x-axis, which is taken to be immobile (and impermeable), so ζ > 0. The model is the
two-dimensional version of that described by Balmforth et al. (2008), and the reader
is referred to that paper for additional details.

We express the equations in a dimensionless form by scaling horizontal lengths
by the dam’s characteristic width, � (the standard deviation of its Gaussian shape,
�= 10 cm in the experiments), vertical lengths by the initial dam height Z0, speeds by√

gZ0 and time by �/
√

gZ0 (g being gravitational acceleration). The shallow-water
equations are then

ht + (hu)x = 0, (3.1)

ut + uux = −hx − ζx − (cf |u| + λ)
u

h
+ νuxx, (3.2)

where the subscripts x and t denote partial derivatives. The final three dissipative
terms on the right of (3.2) contain three dimensionless parameters, which can all be
written alternatively in terms of dimensional constants:

cf =
�Cf

Z0

and ν =
νT

�
√

gZ0

, λ =
Λ�

Z0

√
gZ0

. (3.3)

Thus, Cf denotes a Chézy coefficient parameterizing turbulent bottom drag; νT is a
kinematic viscosity representing turbulent eddies; and Λ is a laminar friction factor
(with units of m s−1). The turbulent parameterizations are relevant in the geological
problem, whereas laminar friction is introduced to model viscous Stokes layers in the
laboratory setting. The diffusion term in (3.2) takes a simple viscous form but is not
conservative, which requires a term of the form νh−1(hux)x . Both forms have been
explored in the literature (e.g. Needham & Merkin 1984; Merkin & Needham 1986),
always with the goal of smoothing the solution; we used the non-conservative form
in the computations reported below, although we did verify that computations with
the conservative version did not lead to significantly different results.

We use an Exner equation for the bed elevation,

ζt = −εE(u2), (3.4)

which contains a dimensionless erosion parameter ε and a function that depends on
the stress exerted on the bed by the water (given dimensionlessly by u2). We take

E(u2) =

{
0, u2 < u2

∗,
(u2 − u2

∗)
α, u2 � u2

∗,
u∗ = U∗/

√
gZ0, (3.5)

and

ε =
W�

Z0

(gZ0)
α−1/2, (3.6)

where U∗ denotes a (dimensional) threshold speed below which erosion does not take
place; W is the dimensional counterpart of ε; and α is an empirically determined
parameter that we fix equal to 3/2 (cf. Parker 2006). This formulation for erosion was
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used by Cao et al. (2004) and Taki & Parker (2004), amongst others, although the
choice of α may not be appropriate for steep slopes (Rickenmann 2001).

Equation (3.4) accounts only for erosion but not deposition. Sedimentation effects
can be incorporated into the model by including an additional variable representing
the concentration of suspended load (see Balmforth et al. 2008). Alternative flux
formulae may also be more appropriate when bed load transport dominates the
sediment transport (e.g. Parker 2006). Indeed, whereas observationally it was clear
that sediment was being transported within the bulk of the fluid during the fastest
phases of the dam break once the incision slowed, bed load dominated the transport.
(The water column was visibly clouded by suspended sediment; the importance of
suspended load is confirmed by estimates of the Rouse and Shields numbers, which,
for the coarse sand experiments, are of the order of one and three respectively, using
the fluid speeds of Um = 0.2m s−1, which we measured close to the top of the dam
(compare with figure 5).) Thus, although our transport law may apply for parts of the
dam break, it is not clear that the law is very accurate in the later stages. In the interest
of brevity, we omit such generalizations of the model and note only that we have
verified that the qualitative details of the dam break dynamics predicted by the model
is not dictated by the specific model of erosion. Also, the shallow-water equations
in (3.1)–(3.2) ignore any sources of mass and momentum in the fluid equations due
to erosion and deposition. This simplifying approximation is standard but known to
be inaccurate in some related contexts (Cao et al. 2004). Elsewhere (Balmforth et al.
2008), we found that including the feedback of the sediment on the water flow had no
qualitative effect. Finally, our sediment is implicitly taken as uniform, so we do not
account for a bimodal particle distribution or further complications of the sediment
dynamics.

We solve the system (3.1)–(3.2) and (3.4) numerically in the domain 0< x < 2	

beginning from an initial condition corresponding to a dammed lake with a
superposed wavy disturbance. The maximum of the initial dam is positioned at
x = 	, with the reservoir occupying the region 0 < x < 	. (So 	 is the dimensional lake
length in units of the dam width: 	 = L/�.) We take

h(x, 0) = heq(x) + A0 sin(2πx/	), u(x, 0) = 0, ζ (x, 0) = e− 1
2

(	−x)2
, (3.7)

heq(x) =

{
h0 − ζ (x), h0 > ζ and x < 	,

0, otherwise,
(3.8)

where h0 and A0 are parameters. That is ζ (x, 0) and heq(x) represent the undisturbed
lake, whose level is a fraction h0 of the dam height; the wave is launched by
perturbing the lake depth with a sinusoidal disturbance of amplitude A0. For boundary
conditions, we take u = hx = 0 at x = 0 (an impermeable wall) and impose ‘open’ flow
conditions ux = hx = 0 at x =2	. The numerical technique used is described further in
Balmforth et al. (2008).

3.2. Numerical results

Figure 6 presents two sample numerical solutions with different initial wave
amplitudes. Shown is the evolution of the water surface h(x, t) + ζ (x, t) in space
and time, a time series of the dam height ζmax(t), water depth at the left boundary
of the reservoir h(0, t) and a series of snapshots of the dam profile. In each case,
the initial disturbance generates waves that subside into a regular seiche. The spilling
of the seiche over the dam generates pulses in discharge that sequentially lower the
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Figure 6. Two numerical solutions of the shallow-water model with initial wave amplitudes of
A0 = 0.164 and 0.1644. The elevation of the water surface, h(x, t) + ζ (x, t), is shown in panels
(a) and (b) as a surface over the (t, x)-plane. Panels (c) and (d) show the dam height, ζmax(t),
and the water level at the left boundary of the upstream basin, h(0, t), against time. Panels (e)
and (f ) show the evolution of the dam profiles. In panel (c), the expected exponential decay
(with exponent γ � 0.0074) of the linear seiche is also shown. The parameter settings are
ε = 0.25, u∗ = 0.1, ν = 0.04, cf =0.0125, 	= 16, α = 3/2, h0 = 0.98 and λ= 0.0125, and there
are 2048 gridpoints in x. These parameters are similar to the experimental parameters, whose
calibration is discussed in § 5.2.
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numbers of seiches are required to break the dam.

barrier. The higher amplitude initial wave ultimately breaks the dam after about
seven periods of the seiche. The weaker disturbance, however, damps away to leave
the obstruction intact; once overtopping subsides, the seiche decays exponentially
with the rate expected for the linear normal mode (see figure 6c). Note the sharp
shock-like features that propagate downstream of the dam after each overtopping,
which is typical of shallow-water hydraulics in this type of situation. These weak
bores are diffusively smoothed and have speeds that are influenced by the viscous
term added to the shallow-water equations (e.g. Merkin & Needham 1986).

More details of the breaching process are displayed in figures 7 and 8. The first
figure shows the flux, q = hu, and (dimensionless) Bernoulli potential, B = u2/2+h+ζ ,
during the incision. Like their experimental analogues in figure 5, these quantities
show some tendency to be constant in space; that they are not perfectly so indicates
the importance of unsteadiness and dissipation in the flow (cf. § 4.1). The theoretical
dam break threshold on the (ε, A0)-plane is presented in figure 8 (holding the other
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parameters fixed), together with the number of seiches that are needed to initiate the
dam break,

Qualitatively, the theoretical results reproduce many of the features in the
experiments described in § 2; a more quantitative comparison demands the calibration
of the theoretical parameters, which we attempt in § 5.2. One notable qualitative
difference with the experiments arises because the model does not incorporate
deposition. This feature is particularly non-physical in the initial phases of the dam
break during which the overtopping waves decelerate due to drag once they reach the
flat plane beyond the dam. At this stage, the eroded material should sediment from the
relatively sluggish flow, leaving a skirt of deposition. Moreover, without deposition,
there is no eventual arrest of erosion and the formation of a wedge-shaped relic of
the original dam (see § 2); instead, the whole dam is removed.

4. A simpler model
In most situations, the rate of erosion is relatively slow, ε � 1. Thus, as fluid rushes

over the dam on the hydrodynamic time scale �/
√

gZ0, the bed remains largely in
place and is only eroded over a longer time scale. Similarly, when the reservoir is much
longer than the dam (	 � 1) and empties through a shallow breach, the seiche period
and drainage time are also relatively long. Hence, the problem decomposes into two
parts: in the reservoir, a slow, large-scale seiche is superposed on a gradually changing
mean level. The reservoir feeds water towards the dam, where the outflow steadily
adjusts to the slowly varying upstream head and gradually erodes that obstruction.
The mathematical expression of these ideas leads to a simpler model of the dam
break.

4.1. Dam hydraulics

In the vicinity of the dam, we ignore fast hydrodynamic adjustments by neglecting
the time derivatives ht and ut in comparison to (hu)x and uux . We also simplify the
equations further by dropping the dissipative terms (cf |u| + λ)u/h and νuxx , which
brake the eroding outflow over the dam but do not qualitatively affect the dynamics
(cf. Pratt 1986; Hogg & Hughes 2007). This reduces the system of equations (3.1)–(3.4)
to

(hu)x =

(
1

2
u2 + h + ζ

)
x

= 0, (4.1)

ζt = −εE(u2). (4.2)

Equations (4.1) are familiar in hydraulics (e.g. Baines 1998) and imply that the water
flux, q , and Bernoulli potential, B , are constant in space:

q(t) = hu, B(t) =
1

2
u2 + h + ζ. (4.3)

Moreover, (4.1) can be expressed as the differential equation (u − q/u2)ux = − ζx ,
which has no regular solution at the point at which q = u3 unless ζx also vanishes
there. Thus, if ζ (xm) = ζm, u(xm) = um and h(xm) = hm at the dam maximum x = xm, it
follows that

q = u3
m, hm = u2

m and B =
3

2
q2/3 + ζm. (4.4)

Sufficiently far upstream of the dam, ζ → 0, and the water level approaches that of
the reservoir, denoted hL. Hence, B = hL + q2/(2h2

L), and we arrive at an algebraic
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problem determining the flow conditions at the maximum of the dam:

3q2/3 − q2h−2
L = 2(hL − ζm), if hL > ζm,

q = um = hm = 0, if hL < ζm.

}
(4.5)

The second line of (4.5) applies when the water level is lower than the top of the
dam and when there is no outflow. The flow in the vicinity of the dam is therefore
determined completely by the difference between the upstream water level and the
dam maximum. In other words, the dam maximum ‘hydraulically controls’ the water
flux (cf. Baines 1998). Finally, the dam erodes according to(

∂ζ

∂t

)
x=xm(t)

≡ dζm

dt
= −εE

(
u2

m

)
. (4.6)

4.2. The lake dynamics

In the reservoir, ζ → 0, and we now retain the time derivatives in (3.1) and (3.2)
because both the seiche and drainage are relatively slow. Let

〈. . .〉 ≡ 1

	

∫ 	

0

(. . .) dx (4.7)

denote the spatial average over the reservoir. Then the mean water depth is H = 〈h〉
and (from integrating (3.1) and applying the boundary conditions at x = 0) satisfies

dH

dt
= −q

	
, (4.8)

where q is the water flux through the dam region, as given by (4.5).
A crude model for the seiche dynamics can be extracted using a Galerkin-style

approximation based on the gravest linear mode: We set h = H (t)+η(x, t) and average
(3.1)× cos(πx/	) and (3.2)× sin(πx/	) over the reservoir. After a little manipulation,

d

dt

〈
η cos

(πx

	

)〉
+

πH

	

〈
u sin

(πx

	

)〉
=

1

	
[(H + η)u]x=	 − π

	

〈
ηu sin

(πx

	

)〉
(4.9)

and

d

dt

〈
u sin

(πx

	

)〉
− π

	

〈
η cos

(πx

	

)〉
=

〈[
νuxx − (λ + cf |u|)

(H + η)
u − uux

]
sin

(πx

	

)〉
.

(4.10)

The first term on the right of (4.9) represents an outgoing flux due to wave transmission
across the dam. It is possible to make estimates of this term, but we neglect it here in
the interest of simplicity. Finally, we take η � H and compute the averages using the
approximations

η ≈ a(t) cos(πx/	) and u ≈ b(t) sin(πx/	). (4.11)

This furnishes a pair of equations for the modal amplitudes a(t) and b(t), which
are quoted below and are coupled to the dam hydraulics via the upstream head,
hL ≡ H − a.

4.3. The model

The equations of the simplified model can be expressed in the compact form,

dH

dt
= −u3

m

	
,

dζm

dt
= −ε

(
u2

m − u2
∗
)α

+
, (4.12)
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Figure 9. Solution of the reduced model, showing H (t) − a(t), ζm(t) and hm(t) in the main
picture, xm(t) in the inset on the right and two insets of ζ (x, t) on the left (snapshots for
t = 0, 10, 13, 17, 37, 63, 114, 165, 191, 204, 219 and 227 and as a density on the (t, x)-plane,
with shading increasing uniformly from 0 to 1). The initial amplitude is a(0) = 0.124, and the
remaining parameter settings are as in figure 6.

da

dt
+

πH

	
b = 0,

db

dt
− π

	
a = −

(
π2ν

	2
+

λ

H
+

8cf

3πH
|b|

)
b, (4.13)

where

u2
m =

2

3
(H − a − ζm)+ +

u6
m

3(H − a)2
, (4.14)

and the subscript + on a variable X+ is shorthand for Max(X, 0), which conveniently
incorporates the switching on and off of erosion and the flow over the dam. Note
that (4.14) has multiple possible solutions in um, but only the solution continuously
connected to um = 0 at H − a − ζm = 0 is physically meaningful. Moreover, although
the dam break dynamics are now described by the four variables (H, ζm, a, b), one
must still solve (4.2) everywhere in order to compute the evolution of the full dam
profile.

A sample solution is shown in figure 9 for an initial wave amplitude just above
the threshold for dam break; the remaining parameter settings are the same as
the numerical solutions of the full shallow-water equations displayed in figure 6.
Although the reduced model qualitatively captures the dynamics of the full shallow-
water system, the erosion is stronger in the reduced model, which can be attributed
to the neglect of drag within the breach.

Thresholds on the (ε, A0)-plane (with A0 ≡ |a(0)|) for the reduced model are shown
in figure 10; the results qualitatively mirror those of figure 8. The figure includes a
conservative estimate of the threshold obtained by first making the approximation
u2

m ≈ (2/3)(H − a − ζm) in (4.14), which is valid when u2 � h upstream of the dam. In
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Figure 10. Dam break thresholds for the reduced model. Shown by the dotted lines are
thresholds for different values of the drag parameter λ (the curves are for λ= 0, 10−4, 0.001,
0.002, 0.005, 0.01, 0.02 and 0.04), with cf =0, ν = 0. The other parameters are chosen as
usual. The solid line and stars show the threshold for the ‘standard’ parameter settings of
figure 6. The circles show the analytical prediction in (4.16). The star indicates the estimated
experimental threshold, given the value of the erosion parameter determined in § 5.2.

this case, combining the equations in (4.12) gives

d

dt
(H − ζm) ≈ ε

[
2

3

(
H − a − ζm − 3

2
u2

∗

)
+

]α

− 1

	

[
2

3
(H − a − ζm)+

]3/2

. (4.15)

The right-hand side of (4.15) expresses the competition between erosion of the dam
and drainage of the reservoir, as modulated by the seiche, and must be positive in
order for a breach to occur. Moreover, since the maximum of H − a over the period
of the seiche is invariably less than h0 + A0 and decreases faster than ζm when the
dam does not break, we estimate the threshold by demanding that the right-hand
side of (4.15) be positive for the initial condition H − a − ζm =h0 + A0 − 1, implying
(on taking α =3/2)

ε >
(h0 + A0 − 1)3/2+

	(h0 + A0 − 1 − 3u2
∗/2)3/2+

. (4.16)

Figure 10 also shows how the threshold depends on the laminar friction coefficient
λ and highlights how drag raises the actual amplitude threshold above the estimate
in (4.16). Additionally the figure reports the experimental threshold based on the
observations described in § 2 and the estimate of ε from § 5.2. Note that varying the
other two dissipative parameters cf and ν has much less affect on the threshold unless
these parameters are given much larger values, reflecting the dominance of laminar
drag in this physical regime.

4.4. The incision

Once the runaway incision begins, the seiche largely damps away, (a, b) → 0, and
(4.12) and (4.14) simplify to

dH

dt
= −u3

m

	
,

dζm

dt
= −ε

(
u2

m − u2
∗
)α

+
, u2

m =
2

3
(H − ζm)+ +

u6
m

3H 2
, (4.17)
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Figure 11. Runaway incision times, tI , defined as the time taken from the moment that
ζm = 0.8 up to the instant that the dam is removed. Panel (a) shows the estimate in (4.18),
together with measurements from the shallow-water model (circles) and the full reduced model
(dots), computed for A0 = 0.3. The star indicates the experimental measurement for the coarse
sand dams, as given by the calibration of § 5.2. Panels (b) and (c) show tI for the shallow-water
model and full reduced model, respectively, as a density on the (ε,A0)-plane (with standard
parameter settings).

which also offers a model for dam breaks initiated by overfilling the reservoir. By
simplifying (4.17) still further and assuming α = 3/2, we may extract some analytical
estimates of the time for the incision and maximum flux reached: Assuming that
um ≈

√
2(H − ζm)/3 � u∗, we integrate (4.17) from the beginning of the incision t = tS

(i.e. the time for the initial seiche) when ζm = ζI and H = HI , up to its end t = tS + tI
when ζm → 0. This gives a duration

tI ∼ C

ε
[1 − (ε	)−1]−1, (4.18)

with

C = 2

(
3

2

)3/2
{

(HI − ζI )
−1/2 −

[
HI − ζI

ε	

]−1/2
}

. (4.19)

By way of illustration, we adopt the convenient, if somewhat arbitrary choice ζI = 0.8,
and assume that the mean lake level has yet to decline appreciably at the beginning of
the incision, so that HI ≈ 1. This leads to the incision time illustrated in figure 11. An
even cruder approximation is to assume that HI − ζI � 1, giving C ≈ 2(3/2)3/2(HI −
ζI )

−1/2 ≈ 8 (which leads to tI ≈ 40 for the dam break of figure 9). Also shown in
figure 11 are analogous measurements of tI from the full shallow-water and reduced
models. The overall agreement is not especially good, partly because the estimate
(4.18) is independent of the initial wave amplitude which retains some influence in
the more complete models. However, the cruder estimates do reproduce the correct
order of magnitude.

In both the shallow-water and reduced models, the maximum discharge, qmax

(the greatest value of |dH/dt |), occurs at the end of the incision, when t = tS + tI
(cf. figure 9). At this instant, our approximation and integration of (4.17) implies

qmax =
2

3

[
1 − ζI

ε	

]3/2

∼ [1 − (ε	)−1]3/2. (4.20)

The prediction (4.20) is plotted against ε in figure 12. Again we also include data
for the full shallow-water and reduced models. Once more, the crude estimate fails to
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Figure 12. The maximum flux attained during the dam break, qmax . Panel (a) shows the
estimate in (4.20), together with measurements from the shallow-water model (circles) and
the full reduced model (dots), computed for A0 = 0.3. The star indicates the experimental
measurement for the coarse sand dams, as given by the calibration of § 5.2. Panels (b) and
(c) show qmax for the shallow-water model and full reduced model, respectively, as a density
on the (ε,A0)-plane (with standard parameter settings).

incorporate any dependence on the initial wave amplitude, which is problematic for
the full shallow-water model, as the maximum flux can be achieved in the reservoir
during the seiches (leading to the relatively flat values of qmax as functions of ε), a
feature also not captured by the reduced model.

After the incision has ceased, the lake drains away according to

H (t) =

[
H (tS + tI )

−1/2 +
(t − tS − tI )

2	

]−2

, (4.21)

which implies a characteristic, final drainage time scale tD ∼ D	, with D a factor of
the order of unity.

5. Discussion
5.1. Dimensional considerations

The most important dimensionless groups of the theory are the combinations

A, ε ≡ Wg�, u∗ =
U∗√
gZ0

, λ ≡ Λ�

Z0

√
gZ0

, r =
1

ε	
=

1

WgL
, d = 1 − H0

Z0

,

which, respectively, control the initial wave amplitude, the rate of erosion, the erosion
threshold, the fluid drag, the rate of lake drainage compared to erosion (L = �	 is
the dimensional lake length) and the initial difference between the mean lake level
(H0) and the dam height (Z0). The parameters all play an important role in the initial
seiche phase, and hence the threshold for dam break: A, λ, r and d determine the
degree and persistence of overtopping, whilst ε and u∗ set the amount of erosion.
Dimensional analysis demands that the threshold may formally be written as the
condition, A>Ac(ε, u∗, λ, r, d), and the results presented in §§ 3 and 4 offer some
insight into the function Ac. Our crudest estimate suggests

Ac = d +
2u2

∗
3(1 − r2/3)

≡ Z0 − H0

Z0

+
2U 2

∗
3gZ0

(
1 − 1

(WgL)2/3

)−1

(5.1)

(cf. (4.16)). The physical interpretation is that the initial wave height should exceed
the difference between the lake level and dam height by an amount given by the need
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to surpass the erosion threshold and weighted by a factor which ensures that the
erosion rate overtakes the competing effect of lake drainage (WgL > 1).

Likewise, the total time for the reservoir to empty is formally given by a function
tB(A , ε, λ, r, d, u∗)�/

√
gZ0. The dimensionless time scale tB can be split into three

components, tB = tS + tI + tD , where tS is the time of the initial seiche; tI is the time
for the runaway incision to occur once initiated; and tD is the final drainage time
after the erosion of the dam has been arrested. Once the seiche initiates the runaway
incision, the details of the initial lake and wave disturbance become secondary. Hence,
we may write

tB = tS(A, ε, λ, r, d, u∗) + tI (ε, r, u∗) + tD(εr = 	), (5.2)

with tI displayed in figure 11 and where our crudest estimates suggest that

tI ∼ C

ε(1 − r)
with C ≈ 8. (5.3)

The peak discharge is

Qmax ∼ Z0

√
gZ0 qmax(A, ε, u∗, λ, r, d), (5.4)

where qmax is of the order of one (cf. figure 12). Our cruder estimates suggest (cf. also
(4.20))

Qmax ∼ Z0

√
gZ0

(
1 − 1

WgL

)3/2

. (5.5)

5.2. Comparing theory and experiment

To compare theory and the experiments, one must first calibrate the empirical
constants. The erosion model takes the form dζm/dt = − WE(um). Consequently, by
monitoring the dam height and water speed, one can measure the erosion parameter
W once the threshold U∗ in E(u) is known. Following Parker (2006), for sediment
with a single particle size, we express the threshold as a Shields stress,

τ∗ ≡ U 2
∗

Rgδ
≈ 0.5

[
0.22Re−0.6

p + 0.06 × 10−7.7Re−0.6
p

]
, (5.6)

where

Rep =
(Rgδ)1/2 δ

ν
(5.7)

is the particle Reynolds number; R = (ρs − ρ)/ρ; and ρs and δ are the particle
density and mean diameter (with ρ as the fluid density and ν as the fluid kinematic
viscosity). Proceeding down this route for the coarse sand, we arrive at the estimates,
Rep ≈ 100 and U∗ ≈ 0.015 m s−1. This threshold speed is much less that the observed
flow speeds over the dam’s crest (see figure 5), and so W ≈ u−3

m (dζ/dt) (using α = 3/2).
Thence, we estimate that W ≈ 0.26±0.1 s2 m−2 for experiments in the narrow tank and
W ≈ 0.15 ± 0.1 s2 m−2 for the wide tank, which are consistent and suggest we adopt
the nominal value W = 0.2 s2 m−2. The erosion parameter, W , and threshold, U∗, then
translate to the estimates, ε = gW� ≈ 0.2 and u2

∗ = U 2
∗ /(gZ0) ≈ 10−4 (with Z0 ≈ 0.1m

and � ≈ 0.1m). An analogous calculation for the bimodal mixtures cannot be made,
since formulae equivalent to (5.6) do not exist for such materials. There is also a
certain amount of disagreement in the literature over formulae such as (5.6) (e.g.
Ouriemi et al. 2007). We do not regard this issue as significant because the flow
speeds reached in the breach are well above threshold.
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The primary damping of the seiche in the experiments arises through viscous
dissipation in Stokes’ layers adjacent to the walls of the tank. The effective damping
rate can be estimated to be of the order

Λ ≈
(

π2ν2
T g

4L2H 3
0

)1/4

∼ 0.01 s−1.

Hence, λ=Λ�/Z0

√
gZ0 ∼ 0.01. Given that �/Z0 ∼ 1, the estimates of Cf , which

range from 0.001 for smooth walls to 0.1 for rough ones, translate to cf ≈ 0.001–0.1.
Finally, the viscous coefficient, ν, would be of the order of 10−5 if the molecular
value of viscosity were appropriate but could be as large as 10−2 if this quantity
parameterized turbulent eddies with characteristic speeds of 0.1 m s−1 and length
scales of 0.01 m (suggesting an effective kinematic viscosity of 10−3 m2 s−1).

For comparison, we also mention a cursory calibration for the geological setting:
data from the Nostetuko Lake outburst flood (Clague & Evans 2000) indicate that
the moraine dam was incised at a rate of approximately 10 mh−1 by a flow with
velocity 3.3 m s−1, suggesting W = O(10−4) s2 m−2. Assuming a dam width and height
O(100) m, ε = O(10−1). The lake length was order a kilometre, indicating 	 ∼ 10.
Turbulent drag surely dominates laminar friction in this situation, and so we expect
drag to be given by the Chézy form with Cf ≈ 0.1 (taking � ∼ Z0).

The calibration therefore suggests parameter settings that are similar to the standard
values adopted for most of our theoretical calculations. Moreover, in view of the
crudeness of the theory, the large number of parameters and the omission of several
physical effects that clearly play a role (such as deposition), it is questionable to fine-
tune the parameter settings any further. Hence we compare the two without further
adjustment.

For Ac, the theoretical models suggest that the threshold in initial wave amplitude
should be about 13 % of the water depth, which is remarkably close to the observation
reported in § 2 (see also figure 8). Crude estimates of the experimental incision time and
maximum flux can be extracted from the time series of lake level shown in figure 3
and are of the order of 20 s and 2.4 × 10−3 m2 s−1, respectively (q ≈ − LdhL/dt).
Direct measurements of the flux within the breach using tracer particles are higher
(4 × 10−3 m2 s−1 or more, see figure 5). Theory predicts a dimensionless time for
incision of the order of 30 (see figure 11). Coupled with the characteristic time scale,
�/

√
gZ0 ∼ 0.1 s, used in the non-dimensionalization, this corresponds to a time of

about 3 s. The corresponding maximum flux from (5.5) is 3.5 × 10−2 m2 s−1. Hence,
theory and experiment compare less favourably for the incision time and maximum
flux (see also figures 11 and 12). The theoretical predictions are sensitive to the
material properties and in particular on the estimate of r =1/(WgL). Further, the
theoretical estimates may be poor due to the omission of deposition, which plays
a key role in arresting erosion in the later stages of the experimental dam breaks.
Alternatively, we have also ignored the feedback of the sediment on the flow dynamics
and in particular the eroded mass added to the flow, which could reduce the flux and
lengthen the duration of the dam break.

6. Conclusions
In this paper, we have modelled, both experimentally and theoretically, how a

dam can be broken by a combination of overtopping waves and runaway erosional
incision. The experiments demonstrate the feasibility of the scenario, and the
phenomenology can be qualitatively reproduced by theoretical models. Perhaps
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unsurprisingly, the comparison fares less favourably at the quantitative level, although
a fine-tuning of parameters and the addition of more physics of sediment transport
may improve the situation. The ingredients of the models include a slowly decaying
seiche in the dammed reservoir that feeds water to a hydraulically controlled breach
in the dam. Whether the model incorporates these ingredients within a shallow-water
formulation or in a simpler conceptual model capturing the main global variables
(dam height, reservoir depth and seiche amplitude), the dam break process amounts
to a competition between erosion, lake drainage and seiche damping. A threshold
naturally results, wherein the initial wave amplitude, or rate of erosion, should exceed
a critical value for a break to occur.

A key limitation of our theoretical analysis is that it is two-dimensional, whereas
moraine-dammed lakes are complicated three-dimensional structures. In fact, a
puzzling observation in the experiments is that discharges are comparable in both
narrow (5 cm width) and wide (20 cm width) tanks (see figure 3), and the width of the
incised channels in the latter appears unimportant. Theoretical computations with the
three-dimensional generalization of the shallow-water model (Balmforth et al. 2008)
also suggest that discharges, and even the erosion threshold, are weakly sensitive to
the third dimension. This result can be rationalized by the fact that, for steady flow in
a three-dimensional channel of slowly varying width, the concept of hydraulic control
still applies but to the cross-channel averaged flow speed and depth (e.g. Baines
1998). Consequently, the difference between the breadth of the lake and the width of
the breach in the dam does not play a role, as might have originally been thought.
More generally, one expects that the ratio of lake breadth to breach width becomes
important when the lake is much wider than the incision. In our experiments and
shallow-water computations, the breach is only three or so times narrower than the
lake width. In geological settings, the lake could be rather wide and the argument
less compelling. Furthermore, other physical effects, such as the focusing of the initial
wave into a narrow pre-existing channel (Blown & Church 1985), might dominate the
phenomena studied here.
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